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On the Singularity at a Concentrated Load Applied to a Curved Surface

By

E. Sternberg and R. A. Eubanks
Illinois Institute of Technology

This paper deals with the singularity at the point of application of

a concentrated load acting perpendicular to a curved boundary of an elastic

body. In a neighborhood of the point of application, the boundary is

assumed to be representable by a sufficiently smooth arbitrary surface of

revolution, the axis of which coincides with the load axis. In the event

the surface is locally analytic, it is shown that the singularity is

identical with that appropriate to a concentrated load applied normal to

a plane boundary if and nly if the curvature of the meridian of the sur-

face vanishes at the load point. The required modified singularity for

the case of non-vanishing curvature is determined in closed form to the

extent where the residual surface tractions are finite and continuous.

Introduction

The singularities encountered in concentrated force prcblems of the

theory of elasticity re4uire special and separate treatment if one is to

arrive at practically useful representations of the solution to such prob-

lems. Indeed, in order to assure results which are amenable to a complete

numerical evaluation, it is essential to determine in closed form the

relevant singularities at least to the extent where the residual problem

is characterized by finite and continuous surface tractions. This process

*The results presented in this paper were obtained in the course of
an investigation conducted under Contract N7onr-32906 with the Office of
Naval Research, Department of the Navy, Washington, D. C.
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was carried out in a previous paper by F. lRsenthal and one of the present

authors [13 1 in connection with the problem of the sphere under concen-

trated loads. In this particular case it was found that the singularity

at a concentrated normal force is not identical with the well known

singularity corresponding to a concentrated load applied perpendicular to

a plane boundary, and that certain supplementary singularities have to

be introduced to effect a reduction of the problem to one obeying the fore-

going regularity requirements.

The investigation just cited suggests more general questions: Under

what circumstances does Boussinesq's solution E23 2 for the semi-infinite

medium bounded by a plane and acted on by a concentrated surface load,

supply the complete singularity appropriate to a concentrated load applied

to a curved boundary? What are the supplementary singularities needed in

the event the Boussinesq singularity fails to yield a regular residual

problem? It is the purpose of the present paper to deal with these

questions on the assumption that the load is perpendicular to the boundary

and that the boundary, in a neighborhood of the load point, is representable

by an arbitrary, sufficiently smooth, surface of revolution, the axis of

which coincides with the load axis.

The usual conditions imposed on the solution to a problem involving

concentrated surface forces, are as follows (a) it must satisfy the field

equations of the theory of elasticity throughout the body under con-

sideration; 3 (b) it must satisfy the boundary conditions for distributed

1 hnbers in brackets refer to the bibliography at the end of the paper.

2See also [3], P. 191.

31t is assumed here that concentrated forces at interior points, and
otherwise singular body force distributions, are absent.
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tractions;| (c) it must possess a singularity at each point of application

of a concentrated load such that the resultant of the tractions on any

surface enclosing the load point, and lying wholly in the region occupied

by the medium, tends to the corresponding prescribed concentrated load in

the limit as the surface is contracted to the load point. As emphasized

in [l, these three conditions, although necessary, represent an incomplete

formulation of the problem and fail to characterize the solution uniquely.

A unique characterization is reached by considering the modified problem

in which each of the concentrated loads is replaced with an arbitrary

continuous distribution of surface tractions over finite surface elements

surrounding the load points. The solution to the concentrated force problem

is then uniquely defined as the limit of the solution to the modified prob-

lem as the surface elements are shrunk to the load points while the re-

sultants of the distributed tractions are made to approach the given con-

centrated forces.

This definition, which is analogous to Kelvin's definition through a

limit process of a concentrated force at an interior point s is natural

both on theoretical and on physical grounds; its usefulness ultimately

depends on, and is confirmed by, experimental evidence, such as that sup-

plied by Frocht and Guernsey [. The solution to a concentrated force

problem which is in accord with the definition adopted here, automatically

satisfies the three necessary conditions listed earlier. On the other

hand, as demonstrated in l], there exist pseudo-solutions which meet the

three conditions cited but fail to agree with the foregoing limit criterion.

4If only concentrated loads are present, the solution must leave the
boundary free from surface tractions.

See, for example, [3]o art- 130, p. 183.



The validity of Boussinesq's solution for the half-space uder a con-

centrated load is readily established by applying the preceding definition

of a concentrated surface force, say, to Cerruti's solution6 for the semi-

infinite body bounded by a plane and subjected to distributed surface

tractions. The pseudo-solutions to concentrated force problems discussed

in [l] exhibit a common property: their singularities at the load points

are of a higher order than that of the Boussinesq singularity. On the other

hand, it is clear from similarity considerations that the singularity at

a concentrated load applied to a curved surface must remain dominated by

the Boussinesq singularity; it cannot be stronger. This observation leads

to an additional necessary requirement applicable to the solution of con-

centrated force problems: (d) the order of the singularity at each load

point must not exceed the order r-2 of the Boussinesq singularity. 7

The treatment of the general problem to be considered presently will

be based on conditions (a), (b), (c), and (d). In the special instance

of the sphere under radial concentrated loads, the correctness of the so-

lution so obtained was verified analytically through a limit process. The

question as to whether the four necessary conditions stated always assure

a umique solution, which thus coincides with the limit solution defined

previously, is apparently not easy to dispose of with complete generality.

Until a general affirmative answer is established, solutions to concentrated

force problems conforming to the four conditions listed remain subject to

individual verification through appropriate limit processes.

6 ee 3s, art. ste-t ld i
7r here is the distance from the load points
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We now turn to the determination of a sequence of singular harmonic

functions which in needed in the subsequent analysis. It is hoped that

this part of the paper may prove useful beyond the present application.

A Sequence of Harmonic Functions

*P If (x, y, z) denote Cartesian coordinates, the spherical coordinates

(r, Gs ) are defined through the mapping,

x=r sinQ cos Y, y= r sinQcos Y, s=r cos

O-4r < o, O y-a1-', 0 y4 2W.

With the notation,

p = cosQ, =sin Q, (2)

we have

2 2 p=(x 2 +y) =rp, z=rp (3)

for the relations between the spherical coordinates and the cylindrical

coordinates (p, y, z). Laplace's equation 72 = 0, in the axisymetric

case, for which H = H(r, p), becomes

H + 2 -- 2 = 0. (4)8
rr r r p P H p 0

Equation (4) admits the product solutions, 9

H(rp) = [rn or r - l] [Pn( p ) or %(p)] (n = 0, 1, 2, ... ), (5)

we Pn and n are the Legendre polynomials and the Legendre functions

of the second kind, respectively.

Subscripts attached to functions which originally bear no subscripta,

denote partial differentiation with respect to the argwent indicated.

9For a comprehensive treatment of spherical harmonics, see 15"
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The interior spherical harmonics rnPn(p) are regular throughout the

finite space whereas the exterior harmonics r'nw'Pn(p) vanish at infinity

and, with increasing n, possess progressively stronger singularities at

the origin. If we adopt the notation,

HIn(rp) = r'nP nl(p) (n = I, 2, ... ), (6)

then

n-1 = ns (7)

so that the sequence of exterior harmonica Hn may be generated through

successive differentiations with respect to a of the first order exterior

harmonic H 1 = r 1

For future reference we recall that Pn(p) satisfies Legendre's

equation,

d(q2 + ,(, + 1) Pn = 0 (8)10

and cite the recursion formulas,

-n-i =

(2n 1) PPn =(n + 1) Pn + nP

n n- L-Wn

Furthermore, we record the special values

Pa(o) =(-1)" ] I ,o
22n1) = P2n +1 (0 ) =-0

Pn(O) = 0, P2n+ i(O) = (2n+ 1) P2n(O)

and

The argument of Pn is henceforth assumed to be p and P1 a
P -.



The Legendre functions of the second kind admit the representations

%()= 2 'Pn(P) p Ip (n =O0, 1,. 2, ... ) (12)

in which

Wn I s- - n _ 3 - ( -) Pn_ 3 r--n--- n.-5 *

n (13)

= m mrm-1 Pn -m as = O

Since n(p) has a logarithmic singularity at p = 1 1, the harmonics

rn%(p) and r-n-l%(p) in (5) are singular along the entire z-axis.

In the problem under consideration we shall have need for a sequence

of axisynmetric harmonic functions which is regular in the half-space

z - 0 with the exception of the origin r = 0, where it shall possess
-1

singularities, progressively weaker than that of HI = r . Such a set

of potentials may be constructed through successive integrations with

respect to z of the first order exterior harmonic H 1. We thus seek

a sequence of functions H n(rp) which satisfies the following require-

ments:

7 2 
n = O, (14)(in

a = 1=n n (n -l,2,...), -H o =HI =- . (15) n

Through a process of induction we are led to

Hn(r,p) = rn Tn(p) (n = O, 1, 2, .0.)

Tn(p) = Pn(p) L - V n(p), I
where

L= In r (1 +p) M In (r + z), (17)

nT~he coefficient n in the first of (15) is introduced for later
convenience. Note that (15) is analogous to (7).
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and -- -1 ( _1) - ( 2 + 1) p I

= (3n-2¢2) Pn(2 (n- m)(n 4) ' m+1)

V =0,1 08
Vo

provided,

cn= n j 1 (n = 1, 2, .. ). (19)

In order to verify that the functions Hn, defined by (16) to (19)

have the properties (14) and (15), we first observe that a lengthy comu-

tation, based on (18), (19), and (9), yields the recursion relations,

F2 V:+ np n - n n l  Pno

n(nVn - pV +V 1 ) P - 2Pn-1 (20)

(n = 1, 2, ... ),

which, in turn, imply the differential equation,

d (5 2 V'+.n(n +1)Vn = 2(P'- ' ) (n ,12.). 2)
T nn _ 3. n-iljpo~o (1

From (16), (20), (21), (9), we have

i2  . nT. - nTn . 1 = - pno

n(n - PT = 2PPn (22)12n(. + Tn -1) = n .1 ~

(n = 1, 2, go.),

W; ) + n(n + 1)T - (2n + l)P s (n = o,1,2,...). (23)

With the aid of (16), (22), (23), and (4), Equations (14), (15) now readily

follow. For future purposes we list the special values,

IgNote thatTi
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V~(O) OncP~(O),' v2n. l(O) W [(2n + I)P 2(0)] (24)

V~n() P~n(0)-[P~(0)] , VL 4 1(0) M O2n + l)cnP~n(O)a

which are obtained by induction with the aid of (18), (19), (22), (9), and

(10).

According to (12), (13), (18),

Vn(p) - (_) n  .(P) = n (P) (25)

and (12), (16), (17), (25) yield

Hn(rop) - (-1 )n2 H.(r,-p) = 2 nr (p). (26)

This establishes the connection between the harmonic functions Hn$ which

are no longer product solutions of Laplace's equation, and the spherical

harmonics of the second kind given in (5). Finally, we record explicitly

the first three members of the aggregate Hn(rp):

H n =nr(l +p), H=r [P In r(14p) -1], 1
H r2 [ -3p2 _ 1) lnr( +p) - p 2 -_ 3p "

Sequences of Singular Solutions

The sequence of harmonic functions established previously may be used

to generate certain sequences of singular solutions of the field equations

of elasticity theory. In the absence of body forces, and in case of

torsionless axisymmetry about the s-axis, the general solution of the dis-

placement equations of equilibrium may be written as, 1 3

20 [u,, u , = grad (0 + s(P) -[0,0,(l - 3))0] (28)

and
v20(p,). 9 (t(p,) 0, (29)

13, E2], [6J.
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where , Uy US  are the cylindrical components of displacement, uhems

0 and P designate the shear modulus and Poisson's ratio# respectively.

We define two sequences of particular solutions"' [n and E[Bn

in terms of their generating stress functions as follows:

[A) ... 0 = Hn(rp)s = 0 (n = 0,1,2,...) '

[BD ... 0 = 0, 0= H.(r,p) (n = o,1,2,...) J
in which Hn is defined by (16) to (19). The spherical components of dis-

placement ur, uO and the spherical stress components or a, a', ,

belonging to (28), (29), were given explicitly in [7].15 Substitution of

(30) into (4) to (7) of Reference [7], and use of (22), (23), (8), (9),

yields the following representations of [AD), [BED in spherical co-

ordinates.

[An]:

20 = rn-l(nTn + Pn) 20% - - Tr n

Sr n-2 [n(n - )Tn + (On - 1)Pn]

I-= n 2 + iTn - 2an] (31)

n- [ o <Y~ rn[Tn -P% + Pn]

7; rn - 2 Ii )TU

lThroughout this paper capital letters in brackets denote either the
displacement vector-field or the stress tensor-field of a solution of the
field equations, and equality, addition, as well as multiplication by a
salar, are to be interpreted accordingly.

15u r' 7" vanish identically in view of the assumed rotational
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Ef)20ur = pm [(n -3 +4 ;0) Tn +Pn

20u, = fr n 0(- 4i' T -P]

rn - I n(n-3+2 )pn + (2n-3+2 ,)pP n - 202T'lr L D n J(32)

co= rn1 -n(n+2 P)Tn-2(n+ ;O)pPn+ [1- (3- 2o)p2]Tn

n- r -( 2)p(nTn +  1- (1- 2 ))-2 Tn
i nn

7 = n - 1 (1- 2,0)(nTn+ Pn )  (n- 2+ 2)J)PTn-PP 1

Let Z(r) be the resultant force of the tractions to which a stress

field with rotational symmetry about the z-axis gives rise on a hemisphere

centered at r = 0, lying wholly in the region z lb O, and having an

outer normal which is directed toward the origin. If Z(r) is positive

when its sense is that of the positive z-axis, it was shown in [8J16 that

Z(r) = 27rrf + 2(1 - ))r f dKJ (33)

where 0(r,p) and (I(r,p) are the corresponding generating stress

functions. Applying (33) to (30), we find, with the aid of (9), (10),

(11)) (16), (17), (23), and (24), the values of Z(r) for [AJJ and

CALn]: Z(r) = 2( [2n In r + 1-2nC

2 i(-) n 
2 2n(n) 2 rn43

[A2n + 1 : Z(r) = - "

16See Equations (31), (32) of Reference [8].
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(1Z(r) W 4 )(- 1 )n  22  (Ln) 2  r 1I2n + 1

-,(-)- 1)n . r2hl [(3J, 12h:c )

[B's- 13: Z(r) = 24 (n 2 2nr~l- 2n ] (Cont.)

It follows from (34) that the aggregate of solutions defined by the

linear combination,

Esn = 2(1 - 3)[An + 1* + (n + 1)[B] (5(3S)
(n = 0, 1, 2, ... )

is self-equilibrated in the sense that Z(r) = 0 for [En'. For later

convenience, we record here the displacements and stresses of the first

two members of the sequence [EnI, which also appear in 1)1

2Gur =- (1 - 2;')pL + (3 - 2 ))p - 2(1 -
rq

2G% = 1 (1- -)

= -= -( r[(-- 2)p + 2 -0] (31)

- 1 1[+ - 2+)p2 _ 2p]
l - 1 (Fl-

)'r1 (1) ' - 210)p - 2

2rg = 1rF (14 )l+ - {270 )p 2 (-. 31 (- 9]

SGu =-r2(l+J)( 2 L + 0 -A9P 2 1 + (37)+

a',, = -2(1+s))L+T1 .+ [(-3+1i)P..1--]

f = -2(14i)PgL+4-P [-(5+ )P2 _ (3 -1)P + 2]
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Solution. EAF, ( 1 , Dn ) (3n O p, 2, ... ), with increasing n,

possess progressively weaker singularities along the portion z d 0 of

the x-axis, and are otherwise regular in the finite spacej for n z 0

these solutions vanish as s --w co so far as the stresses are concerned.

Construction of the SinUarity due to a Concentrated Surface Force on a

Curved Surface

Boussinesq's solution [2f 7 corresponding to a concentrated load of

magnitude IQ J applied at r = 0 normal to the plane boundary of a medium

occupying the half-space z b 0, appears as

SO]=- I ( - 2P0)[AO])+ (38)18

where [Ao) is defined by (30) and

E 1) ... 0= 0, 0 = O. r.. (39)

The displacements and stresses of ISo3 follow.

E8oJ,

Ur~~2f' (1 [4 p)-)p-1

2f1r=lp 34) 0 2l )2&(0
o ,. = 2(2 - 7 )p -1 + 2 , Q (1 + p

Q~l 2 0 (p p -Q(z - 2 O)pp

Evidently, Z(r) = Q for jS.J, as is readily verified by means of (38),(39),

(30), and (33).

17ee also [31, p. 191.

l8f Q > 0 the force has the sense of the positive -axis.
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We now turn to a concentrated load acting perpendicular to a curved

boundary (Figure 1). Let the point of application of the load of magnitude

IQ be the origin and again let Q > 0 if the load acts in the positive

s-direction. Suppose that the boundary, in a neighborhood of the origin,

coincides with a surface of revolution Z. the semi-meridian r of

which admits the representation,

F, s=f(p) (o dy 4 a))

f(o) = f,(0) = o,

and let f(P) be at least four times continuously differentiable.19  Since

f' (0) = 0, , possesses a uniquely defined tangent plane20 at its vertex

r = 0. The function f(p) has a Taylor expansion of the form,

f()= a2p2 + ~3 + 64. (4,2)
f+ &3P

so that

hkor k

where k(~) is the curvature of r n

ko- L J.o
With a view toward examining the nature of the singularity at the load

point r = 0, we first determine the normal and shearing tractions o and

I (Figure 1) induced by the Boussinesq solution ESO on the arc r.
To this end we observe by means of the law of stress transformation and

elementary geometric considerations that along r,

19 Note that the regularity restrictions on f imply the sae degree
of smoothness for Z only if the (right-hand) derivatives of odd order
of f(p) at p = 0 vanish. Otherwise, the even extension of f(P) ex-
hibits discontinuities in its derivatives of odd order at the origin.

OThe subsequent analysis is not valid if r = 0 is a conical point
of
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e- p --.. 0 0o 2 ( p + 0 ) - i . i n 2 ( p . 0 1

2 sin 2(p + ") +e coo2 + 0)

in which P is the inclination of the tangent of l. Zvidentlyj

cos 2P = " 1 sin ( 2(46)
S+ (f) 2  2()

Recalling that

r=P[+ ( ) 1]/ (47)

we reach by means of (3), (.1), (42), the expansions,

a2

(1 2 2 _ aa3 + )

r T.P 2?3

p a2 p . a3p2 + (a = )p3 ... (148)

a2 2=., _ ,p2_aa + goes,

valid on r. From (6.), (48), and (2) follows

cos 2(p+ 9)=- 1 + 2a 2 + 8a2a 3... +
,(1,9)

sin 2(P + ) = - 2a2p - ,a/2 - 6(a - a)P 3 +

Substitution of (49) and (40) into (45), after a lengthy routine conpu-

tations, and final use of (43), yields

[soJ,
Q(3 - 2 ) k2

o2r) = +n'-- e o(1) = 0(1) -(50)
4 ( 1 - 2)))k 0  2oP ,+ (5 -1 4 )k0 - 2(1- 2 P)k .. o1

where o(l) and 0(1), respectively, denote functions of p which tend

to zero or to a finite limit as p approaches zero.

If [3] designates the complete solution to the concentrated force

problem under consideration, we may write,
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r5J w [30) + [R(31)

in which ER 0) stands for the solution to a "residual problm", the charac-

terization of which is implicit in (51). We shall suppose, without loss

in generality, that the boundary of the medim is free from distributed

tractions on F. Furthermore, we shall agree to call [R0  "regular'

on Z if the residual problem on Z is governed by finite and coi-

tinuous surface tractions. This requires for ER ,

d(p) = 0(l)0 () = o(l). (52)2

Equations (50), (51) now permit the following conclusions. Ean) is

regular on , if and only if the curvature k and the rate of change

of curvature k' of the semi-meridian r of 1 both vanish at the

load point. We note parenthetically that k is zero automatically if0

the even extension of r has at least a continuous rate of change of

curvature. 22  In the event that the even extension of f(P) is an analytic

function# so that F is an analytic surface, the surface tractions of

[Rl are analytic on if andonlyif k0 =0* Inthis case, andin

this case onlyp the Boussinedq singularity constitutes the entire singu-

larity of CS] at the load point in question.

In order to effect a reduction of the problem to a residual problem

which is regular on Y when k and are not both zero, we nee to
0

introduce supplementary singular solutions, in addition to [Sol. Moreover,

in accordance with conditions (c) and (d) stated in the Introduction# the

21sberve that le(p) = 0(l) is insufficient since it adaits a die-
continuity in the surface shearing tractions of ER03 at the vertex of

2 280e footnote No. 19.
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salementary smngularities sought must be self-equillbrated and of a lamw

order than r 9 . This leads us to solutions E'B3 defined by (35) and

listed uoplicitly for n - 0, 1 in (36), (37).

The local behavior of Lovn r, in the vicinity of p= o,

is established by a process -hich in strictly analogous to that fofowed

in the derivation of (50) , We mays therefore give the results of these

ocqutations diret2ly,

-2(p -- (1- 2 10)ko 0 (1)

o~p). ca), 2'# - + o11)

It is 4Part from (53)a (54) that of of [o) @tin beomes infinite

at p 0 whereas e of C') displays merely a f Lnte discontinuity

at the origin; the normal tractions (e of both of these solutions are

again finite and continuous on , as in the case of [3.

We-now set

c,]. E •0 * Lz).~E
and ask for the values of the coefficients which assure the

regularity in the sense of (52) of the solution ER23 to the new residul

Problem. In view of (50), (53), (54) this imm to

(1 - 2 ) '. 00 2W -
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upplm entary singularities sought must be self-equilibrated and of a lower

order than r"2 . This leads us to solutions defined by (35) and

listed explicitly for n w O 1 in (36), (37).

The local behavior of CzjE o n r . in the vicinity of p 0,

o establiseod by a process which is strictly analogous to that followed

In the derivation of (50)0 We may# therefore# give the results of these

computations directly.

l- a- -(o1 (I - 2 )ko + o(l)

d(p). o(1), 2'(p).- + o(l)

it is apparent from (53), (54~) that '7' of E'03 still become infinite

at p a whereas 71 of [Il) displays merely a finite discontinuity

at the originj the norml tractions e of both of these solutions are

again finite and continuous on L as in the case of (So.

We-now set

and ask for the values of the coefficients o0 A, which aswe the

regularity In the sense of (52) of the solution ER2 to the new residual

problin. In view of (50), (53), (514) this ln& to

o (1 - 2 ) Qk 00 2W 1(56)
- 1+I 129- 3l60i 2k;- 2 (1- 2;J)k0']
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With DO determined as in (55), (56), the surface tractions of [R 2

are finite and continuous on . Alternatively, [S] admits the repre-

sentation,

E03 = D,] + R3(5
IO- [301 k [Dl(s

where A again has the value appearing in (56). The surface tractions

of [R,3 are finite but exhibit a discontinuity in T' at the origin.

It is important to emphasize that the surface tractions of [R2 ] on

Z although finite and continuous, are by no means analytic even if 2

is analytic. This is due to the fact that the derivatives with respect

to P of a' and e in [El], unlike the corresponding derivatives be-

longing to [SO], lEo], possess a logarithmic singularity23 at p = O.

Consequently, the singularity of E62 J, regardless of the analyticity

of X, does not represent the entire singularity inherent in [S] at

the load point.

The sequence of singular solutions [Sol' ES1), ES2J thus gives rise

to a sequence of solutions [ROl, ER,~J [R 2] to the complementary residual

problems, which are characterized by progressively increasing regularity

in the corresponding boundary conditions. The process of successive

"regularizationn of the residual problem can be continued in an obvious

manner by recourse to the remaining members of the sequence of self-

equilibrated singular solutions E1) defined in (35).

If 1 is a portion of a sphere of radius r0 , lying in the half-

space x b O, then k = - ko = 0, and the results obtained here reduce

to those given in D3 in connection with the particular problem of the

23rhe functions designated by o(l) in (54) contain a term,

(p) = p In r(l + p).
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sphere under concentrated loads. Wereas the general questions raised in

the Introduction have been answered within the limitations placed on the

relative orientation of the load and on the local character of the boundary,

it should be pointed out that certain difficulties in the large may arise

in the application of the results to specific concentrated force problems.

Thus, the representations (51), (55), (57) lead to serious complications

if the line of action of a concentrated load intersects the boundary of

the medium on opposite sides of the tangent plane at the point of appli-

cation of the load. Here Es), E 1 .ES2 ), each of which is singular

along the negative z-axis, give rise to line singularities in the interior

of the body. 2 4 Finally, if the region occupied by the medim is not bounded,

the representation (55) becomes inadmissible in view of the behavior of

El1) at infinity.
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